Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117203

RESUMO

We present the development of a flexible tape-drive target system to generate and control secondary high-intensity laser-plasma sources. Its adjustable design permits the generation of relativistic MeV particles and x rays at high-intensity (i.e., ≥1 × 1018 W cm-2) laser facilities, at high repetition rates (>1 Hz). The compact and robust structure shows good mechanical stability and a high target placement accuracy (<4 µm RMS). Its compact and flexible design allows for mounting in both the horizontal and vertical planes, which makes it practical for use in cluttered laser-plasma experimental setups. The design permits ∼170° of access on the laser-driver side and 120° of diagnostic access at the rear. A range of adapted apertures have been designed and tested to be easily implemented to the targetry system. The design and performance testing of the tape-drive system in the context of two experiments performed at the COMET laser facility at the Lawrence Livermore National Laboratory and at the Advanced Lasers and Extreme Photonics (ALEPH) facility at Colorado State University are discussed. Experimental data showing that the designed prototype is also able to both generate and focus high-intensity laser-driven protons at high repetition rates are also presented.

2.
Rev Sci Instrum ; 94(2): 023507, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859040

RESUMO

The PROBIES diagnostic is a new, highly flexible, imaging and energy spectrometer designed for laser-accelerated protons. The diagnostic can detect low-mode spatial variations in the proton beam profile while resolving multiple energies on a single detector or more. When a radiochromic film stack is employed for "single-shot mode," the energy resolution of the stack can be greatly increased while reducing the need for large numbers of films; for example, a recently deployed version allowed for 180 unique energy measurements spanning ∼3 to 75 MeV with <0.4 MeV resolution using just 20 films vs 180 for a comparable traditional film and filter stack. When utilized with a scintillator, the diagnostic can be run in high-rep-rate (>Hz rate) mode to recover nine proton energy bins. We also demonstrate a deep learning-based method to analyze data from synthetic PROBIES images with greater than 95% accuracy on sub-millisecond timescales and retrained with experimental data to analyze real-world images on sub-millisecond time-scales with comparable accuracy.

3.
Rev Sci Instrum ; 93(10): 103543, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319345

RESUMO

Inertial confinement fusion experiments at both the National Ignition Facility (NIF) and the Laboratory for Laser Energetics OMEGA laser facility currently utilize Cherenkov detectors, with fused silica as the Cherenkov medium. At the NIF, the Quartz Cherenkov Detectors improve the precision of neutron time-of-flight measurements; and at OMEGA, the Diagnostic for Areal Density provides measurements of capsule shell areal densities. An inherent property of fused silica is the radiator's relatively low energy threshold for Cherenkov photon production (Ethreshold < 1 MeV), making it advantageous over gas-based Cherenkov detectors for experiments requiring low-energy γ detection. The Vacuum Cherenkov Detector (VCD) has been specifically designed for efficient detection of low energy γ's. Its primary use is in implosion experiments, which will study reactions relevant to stellar and big-bang nucleosynthesis, such as T(4He,γ)7Li, 4He(3He,γ)7Be, and 12C(p,γ)13N. The VCD is compatible with LLE's standard Ten-Inch Manipulator diagnostic insertion module. This work will outline the design and characterization of the VCD as well as provide results from recent experiments conducted at the OMEGA laser facility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...